As the name implies, Intermediate Dynamics: A Linear Algebraic Approach views "intermediate dynamics"--Newtonian 3-D rigid body dynamics and analytical mechanics--from the perspective of the mathematical field. This is particularly useful in the former: the inertia matrix can be determined through simple translation (via the Parallel Axis Theorem) and rotation of axes using rotation matrices. The inertia matrix can then be determined for simple bodies from tabulated moments of inertia in the principal axes; even for bodies whose moments of inertia can be found only numerically, this procedure allows the inertia tensor to be expressed in arbitrary axes--something particularly important in the analysis of machines, where different bodies' principal axes are virtually never parallel. To understand these principal axes (in which the real, symmetric inertia tensor assumes a diagonalized "normal form"), virtually all of Linear Algebra comes into play. Thus the mathematical field is first reviewed in a rigorous, but easy-to-visualize manner. 3-D rigid body dynamics then become a mere application of the mathematics. Finally analytical mechanics--both Lagrangian and Hamiltonian formulations--is developed, where linear algebra becomes central in linear independence of the coordinate differentials, as well as in determination of the conjugate momenta. Features include: - A general, uniform approach applicable to "machines" as well as single rigid bodies - Complete proofs of all mathematical material. Similarly, there are over 100 detailed examples giving not only the results, but all intermediate calculations - An emphasis on integrals of the motion in the Newtonian dynamics - Development of the Analytical Mechanics based on Virtual Work rather than Variational Calculus, both making the presentation more economical conceptually, and the resulting principles able to treat both conservative and non-conservative systems.

Intermediate Dynamics

Special offer terms

Zookal Study - 14-day Premium trial

Free trial

By clicking the checkbox "Add 14-day FREE trial" you are enrolling in a 2-week (14 day) free trial of Zookal Study Premium Plan, and if you do not cancel within those 14 days, you will be enrolled in an auto-renewing monthly subscription for Zookal Study Premium Plan at the end of the trial. Unused trial period benefits have no cash value, are not transferable, and expire at the end of the trial period.

Auto-Renewal

Following the expiration of any free trial period, your Zookal Study subscription will be renewed each month until you cancel. You consent to Zookal automatically charging your payment method on file $14.95 each month after any free trial period until you cancel.

How to Cancel

You can cancel your subscription anytime by visiting "My Account" on homework.zookal.com, clicking "Cancel" and completing the steps to cancel. Cancellations take effect at the end of the free trial period (if applicable) or at the end of the billing month in which your request to cancel was received. Subscription fees are not refundable.

Zookal Study Premium Monthly Subscription Includes:

Ability to post up to twenty (20) questions per month.

10% off your textbooks order and free standard shipping whenever you shop online at
textbooks.zookal.co.nz

Unused monthly subscription benefits have no cash value, are not transferable, and expire at the end of each month. This means that subscription benefits do not roll over to or accumulate for use in subsequent months.

Payment Methods

Afterpay and Zip Pay will not be available for purchases with Zookal Study Premium Plan and/or Free Trial additions.

$1 preauthorisation

You may see a $1 preauthorisation by your bank which will disappear from your statement in a few business days..

Email communications

By adding Zookal Study Premium or Premium Free Trial, you agree to receive email communications from Zookal.

As the name implies, Intermediate Dynamics: A Linear Algebraic Approach views "intermediate dynamics"--Newtonian 3-D rigid body dynamics and analytical mechanics--from the perspective of the mathematical field. This is particularly useful in the former: the inertia matrix can be determined through simple translation (via the Parallel Axis Theorem) and rotation of axes using rotation matrices. The inertia matrix can then be determined for simple bodies from tabulated moments of inertia in the principal axes; even for bodies whose moments of inertia can be found only numerically, this procedure allows the inertia tensor to be expressed in arbitrary axes--something particularly important in the analysis of machines, where different bodies' principal axes are virtually never parallel. To understand these principal axes (in which the real, symmetric inertia tensor assumes a diagonalized "normal form"), virtually all of Linear Algebra comes into play. Thus the mathematical field is first reviewed in a rigorous, but easy-to-visualize manner. 3-D rigid body dynamics then become a mere application of the mathematics. Finally analytical mechanics--both Lagrangian and Hamiltonian formulations--is developed, where linear algebra becomes central in linear independence of the coordinate differentials, as well as in determination of the conjugate momenta. Features include: - A general, uniform approach applicable to "machines" as well as single rigid bodies - Complete proofs of all mathematical material. Similarly, there are over 100 detailed examples giving not only the results, but all intermediate calculations - An emphasis on integrals of the motion in the Newtonian dynamics - Development of the Analytical Mechanics based on Virtual Work rather than Variational Calculus, both making the presentation more economical conceptually, and the resulting principles able to treat both conservative and non-conservative systems.