close

NONLNR DYN PERSPEC WOLFRAM (V6)

Leon O Chua · ISBN 9789814460897
NONLNR DYN PERSPEC WOLFRAM (V6) | Zookal Textbooks | Zookal Textbooks
Format:
Zookal account needed
Read online instantly with Zookal eReader
Access online & offline
NZ$88.00
Note: Subscribe and save discount does not apply to eTextbooks.
-
+
Publisher World Scientific Publishing
Author(s) Leon O Chua
Published 2013-07-10
Related course codes
This invaluable volume ends the quest to uncover the secret recipes for predicting the long-term evolution of a ring of identical elementary cells where the binary state of each cell during each generation of an attractor (i.e. after the transients had disappeared) is determined uniquely by the state of its left and right neighbors in the previous generation, as decreed by one of 256 truth tables. As befitting the contents aimed at school children, it was found pedagogically appealing to code each truth table by coloring each of the 8 vertices of a cubical graph in red (for binary state 1), or blue (for binary state 0), forming a toy universe of 256 Boolean cubes, each bearing a different vertex color combination.The corresponding collection of 256 distinct Boolean cubes are then segegrated logically into 6 distinct groups where members from each group share certain common dynamics which allow the long-term evolution of the color configuration of each bit string, of arbitrary length, to be predicted painlessly, via a toy-like gaming procedure, without involving any calculation. In particular, the evolution of any bit string bearing any initial color configuration which resides in any one of the possibly many distinct attractors, can be systematically predicted, by school children who are yet to learn arithmetic, via a simple recipe, for any Boolean cube belonging to group 1, 2, 3, or 4. The simple recipe for predicting the time-asymptotic behaviors of Boolean cubes belonging to groups 1, 2, and 3 has been covered in Vols. I, II, ..., V.This final volume continues the recipe for each of the 108, out of 256, local rules, dubbed the Bernoulli rules, belonging to group 4. Here, for almost half of the toy universe, surprisingly simple recipes involving only the following three pieces of information are derived in Vol. VI; namely, a positive integer τ, a positive, or negative, integer σ, and a sign parameter β > 0, or β < 0. In particular, given any color configuration belonging to an attractor of any one of the 108 Boolean cubes from group 4, any child can predict the color configuration after τ generations, without any computation, by merely shifting each cell σ bits to the left (resp. right) if σ > 0 (resp. σ < 0), and then change the color of each cell if β < 0.As in the five prior volumes, Vol. VI also contains simple recipes which are, in fact, general and original results from the abstract theory of 1-dimensional cellular automata. Indeed, both children and experts from cellular automata will find this volume to be as deep, refreshing, and entertaining, as the previous volumes.

SUBSCRIBE & SAVE

Save 20% off Textbooks + free shipping with Zookal Study Premium every time you shop and more...

  • Free courtesy eTextbook on a wide range of selected titles
  • Get step-by-step solutions from expert tutors
  • Access powerful online study tools to help you study on the go

20% OFF TEXTBOOKS EVERY ORDER

Instant rewards

Zookal Study gives you the best price on textbooks instantly with full access to experience 24/7 study help you can rely on from day 1 until exam time.

PEACE OF MIND

Cancel anytime

No commitment, no worries. Try Zookal Study for 1 month and cancel at anytime. Cancelling is made easy via your Zookal Study account.

Unlock study tools fit for every moment

Homework Help

Solutions Library

Test Prep

Flashcards

Videos

Translation missing: en.general.search.loading