close
The Transition to Chaos | Zookal Textbooks | Zookal Textbooks
  • Author(s) Linda Reichl
  • Edition
  • Published11112013
  • PublisherSpringer Nature
  • ISBN9781475743500
Based on courses given at the universities of Texas and California, this book treats an active field of research that touches upon the foundations of physics and chemistry. It presents, in as simple a manner as possible, the basic mechanisms that determine the dynamical evolution of both classical and quantum systems in sufficient generality to include quantum phenomena. The book begins with a discussion of Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior; continues with a detailed discussion of area-preserving maps, integrable quantum systems, spectral properties, path integrals, and periodically driven systems; and concludes by showing how to apply the ideas to stochastic systems. The presentation is complete and self-contained; appendices provide much of the needed mathematical background, and there are extensive references to the current literature; while problems at the ends of chapters help students clarify their understanding. This new edition has an updated presentation throughout, and a new chapter on open quantum systems.

The Transition to Chaos

Format
Get it instantly

Zookal account needed

$159.01
Add Zookal Study FREE trial and save a further 10% 

NEW PRICE

$143.11 + free shipping

(10% off - save $15.90)

Zookal Study Free trial

14-day FREE trial. $14.95/mo after. Cancel anytime.

*Discount will apply at checkout.

 See terms and conditions

You will get a further 10% off for this item ($143.11 after discount) because you have added Zookal Study Premium Free Trial to your bag.

For this discount to apply, you will need to complete checkout with the Zookal Study Premium Free Trial in your bag.

-
+
  • Author(s) Linda Reichl
  • Edition
  • Published11112013
  • PublisherSpringer Nature
  • ISBN9781475743500
Based on courses given at the universities of Texas and California, this book treats an active field of research that touches upon the foundations of physics and chemistry. It presents, in as simple a manner as possible, the basic mechanisms that determine the dynamical evolution of both classical and quantum systems in sufficient generality to include quantum phenomena. The book begins with a discussion of Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior; continues with a detailed discussion of area-preserving maps, integrable quantum systems, spectral properties, path integrals, and periodically driven systems; and concludes by showing how to apply the ideas to stochastic systems. The presentation is complete and self-contained; appendices provide much of the needed mathematical background, and there are extensive references to the current literature; while problems at the ends of chapters help students clarify their understanding. This new edition has an updated presentation throughout, and a new chapter on open quantum systems.
translation missing: en.general.search.loading